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Values of inhibition constants, Ki, for a family of structurally related, competitive inhibitors of
calf spleen purine nucleoside phosphorylase (PNP) have been determined employing both inosine
as substrate and a manual assay and 2-amino-6-mercapto-7-methylpurine ribonucleoside
(MESG) as substrate and a robot-based enzyme kinetics facility. Several of the values
determined robotically were confirmed employing the same substrate and a manual assay.
Surprisingly, for many of the inhibitors examined, values of Ki determined with MESG as
substrate are smaller than those obtained employing inosine as substrate by a factor that varies
from less than 2 to 10. Values of concentrations required for 50% inhibition of PNP, IC50, have
also been determined for the same family of inhibitors employing inosine as substrate. Values
of IC50

ino and those for Ki
ino and Ki

mesg for subsets of the inhibitors have been employed as
training sets to create quantitative structure-activity relationships (QSAR) which have
substantial power to predict values of IC50 and Ki for inhibitors outside the training set. These
QSAR models should be useful in guiding future medicinal chemistry efforts designed to discover
inhibitors of PNP having increased potency.

Introduction
The ability to efficiently design or discover novel,

patentable molecules which are potent, specific inhibi-
tors of enzymes or potent, specific agonists or antago-
nists at biological receptors is of great importance. Many
such molecules contribute to the prevention of or
therapy for human diseases. The pharmaceutical in-
dustry worldwide continues to search for and employ
novel technologies to improve their ability to rapidly
identify and characterize molecules in these classes.

Quantitative structure-activity relationships (QSAR)
[or quantitative structure-property relationships (QSPR)]
have been employed, and continue to be developed and
employed, both to correlate information in data sets and
as a tool to facilitate, for example, the discovery of
enzyme inhibitors. Extensive reviews of the enormous
QSAR literature are available.1,2 Work employing clas-
sical QSAR technology has proved useful in any number
of settings. At the same time, we believe that QSAR
technology has a substantial unexploited potential to
facilitate molecular design. Three specific goals in-
clude: (i) to improve the ability of QSAR statistical
models to predict property values for molecules outside
of the training set; (ii) to extrapolate to property values
outside those included by members of the training set;
and (iii) to qualify these models in a way that provides
reliable measures of the accuracy of such predictions.

In an effort to build on classical QSAR technology in
a way that would meet these objectives, a team of
scientists was organized, initially in the pharmaceutical
industry at Sterling Winthrop Pharmaceuticals Inc.,
with the objective of realizing much of the unexploited
potential of QSAR in the service of drug discovery. This

Laboratory functions as a component of that team,
which is led by J. W. Frazer. Our specific objective is to
create high-quality standard databases which can be
employed (i) to test and refine the developing QSAR
technology and (ii) to provide the basis for discovery of
novel molecules having promise of utility in clinical
medicine.

Work reported herein is the result of an effort to build
upon the foundation for discovery of structurally novel,
potent inhibitors of human purine nucleoside phospho-
rylase (PNP). Such inhibitors have multiple, plausible
utilities in clinical medicine.3-5 Scientists at BioCryst
Pharmaceuticals have employed structure-based drug
discovery technologies to create a strong scientific basis
for drug discovery and have used this basis to discover
several classes of promising inhibitors of PNP,6-9 one
of which is currently in advanced clinical trials. We have
determined values of Ki and IC50 for one of these classes
of inhibitors, employing calf spleen PNP, and used the
data to create QSAR statistical models which show
substantial predictive promise. These models may be
employed to predict potency of candidate inhibitors not
yet synthesized, to search for synergies between QSAR
technology and structure-based drug design technolo-
gies, and to use as a basis for creation of more robust
predictive QSAR models through incorporation of ad-
ditional data into the training set.

Results
Determination of Inhibition Constants. Struc-

tures for inhibitors employed in this study and corre-
sponding values for Ki employing 2-amino-6-mercapto-
7-methylpurine ribonucleoside (MESG) as substrate,
Ki

mesg, Ki employing inosine as substrate, Ki
ino, and IC50

employing inosine as substrate, IC50
ino, are collected in

Table 1. Values of IC50 for a number of these inhibitors
† Present address: Millennium Pharmaceuticals, Inc., 238 Main St,
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Table 1. Values of Inhibition Constants for a Family of Inhibitors of Calf Spleen PNPa
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employing inosine as substrate and calf spleen PNP
have previously been reported.6-8 Where comparisons
are possible, our results and those previously reported
are in good agreement. Ratios of values of Ki

ino to Ki
mesg

and IC50
ino to Ki

ino are also collected in Table 1.
Table 1 includes data for 34 inhibitors of calf spleen

PNP. For 28 of these, we have determined values of
Ki

mesg; these vary from 1.7 to 67 500 nM, a factor of
about 40 000-fold. The corresponding values for Ki

ino, for
29 inhibitors, vary from 4.0 to about 24 000 nM, a factor
of 6 000-fold. Values of IC50

ino for the complete set of 34
inhibitors vary from 14.8 to 50 000 nM, a factor of 3 400.

The family of inhibitors examined has modest struc-
tural diversity. Twenty-seven of the 34 inhibitors are
9-substituted-9-deazaguanines; one is 9-substituted-8-
aminoguanine (compound 018); one is 8-aminoguanine
(compound 029); one is a 9-substituted-8-methyl-9-

deazaguanine (compound 028); one is a 9-substituted-
8-amino-9-deazaguanine (compound 023); two are 9-sub-
stituted-9-deazahypoxanthines (compounds 024 and
031); the last is an N-3-substituted-hypoxanthine (com-
pound 027). Thus, the bulk of the structural diversity
lies in the nature of the substituent linked to the
9-position of the purine ring.

Of the 34 inhibitors studied, three (013, 015, and 019)
have 9-substituents which are predominantly anionic
at the value of pH, 7.4, for which we have determined
inhibition constants. Two of these, compounds 013 and
019, are enantiomers. The S-enantiomer is the more
potent of the two, although the difference is not pro-
found. The S-enantiomer is unusual in that, like the
racemic, anionic compound 015, its potency is greater
when employing inosine, rather than MESG, as sub-
strate (Table 1).

Table 1 (Continued)

a All values of Ki and IC50 were determined at pH 7.4, 1 mM phosphate, and 25 °C. Values of IC50
ino were determined at 10 µM inosine.

b Values of IC50
ino for inhibitors 001-024 measured at 10 µM inosine and 1 mM phosphate are generally in good agreement with those

reported by the BioCryst group6-8 measured under comparable conditions with the exception of that for inhibitor 021 for which a value
of 1300 nM has been reported.7 See text for a discussion of the values for inhibitors 013 and 015. Comparative values are not available
for inhibitors 025-034. c Lit.6 11 µM.
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A number of other inhibitors bear 9-substituents that
have the potential to bind to PNP in an ionic form:
these include the phenolic and pyridine substituents.
However, all such inhibitors exist predominantly as the
neutral form at pH 7.4 and are likely to bind to PNP in
that form.

Surprisingly, values of Ki determined employing
MESG or inosine as substrate are not identical within
experimental error. For 25 of the 28 compounds for
which we can make comparisons, inhibitors are equally
potent or more potent, by a factor which is usually in
the range 1-4 but is nearly 10 in one case, when MESG
is employed as substrate. For the other three inhibitors,
which include two of the three anionic substrates
(compounds 013 and 015) and the single 9-substituted-
8-methyl-9-deazaguanine inhibitor (compound 028),
potency is greater by a factor of 5-7 when inosine is
employed as substrate. As noted in Table 1, most values
of Ki for both substrates have been determined repeat-
edly and the observed differences are substantially
greater than experimental error.

For 27 of the 29 inhibitors for which comparisons are
possible, the ratio of IC50

ino to Ki
ino varies over a narrow

range, from 1.3 to 2.5, reassuring consistency. The two
outliers are two of the three anionic compounds, 013
and 015, for which this ratio is 5 or 9 (Table 1).

Statistical Modeling. For two reasons, this PNP
inhibitor data set is not particularly well-suited for
QSAR modeling. First, as noted above, the structural
diversity is modest with the bulk of the compounds
being 9-substituted-9-deazaguanines. Thus little struc-
ture space is covered by 27 of the 34 compounds in the
data set. At the same time, there is a small number of
compounds, most notably 027 and 029 and the three
anionic compounds, 013, 015, and 019, which are
structurally distinct. Second, 28 out of the 34 values of
IC50

ino lie within a rather narrow range: -1.83 g log
IC50

ino (µM) g -0.61; four of the remaining compounds
have log IC50

ino values in the range -0.19 to 0.36, and
the final two values are 1.3 and 1.75. The distribution
of values of log IC50

ino is shown graphically in Figure 1.
A more nearly suitable data set for statistical modeling
would include more structural diversity and a larger
number of values of log IC50

ino in the range 0.0-2.0.
For statistical modeling of values of log IC50

ino, the
data set was divided into four arbitrary subsets, two

containing 8 and two containing 9 inhibitors. The first
subset contained those inhibitors numbered 001, 005,
009,... in Table 1; the second contained those inhibitors
numbered 002, 006, 010,... in Table 1, and so forth. Sets
of molecular descriptors based on earlier experience
were selected for the modeling work. These include
about 400 2D and 3D descriptors traditionally employed
in development of QSAR models as well as a larger set
of descriptors based on electron densities at the molec-
ular surface derived employing TAE technology. Four
modeling runs were completed, using each of the subsets
once as test set and the remaining three subsets as
training set. Thus, either 25 or 26 compounds were
employed as training sets to predict values of IC50

ino for
either 8 or 9 test compounds. Each compound appeared
once in a test set (a prediction) and three times in a
training set (an estimation). Similarly, training sets of
21 or 22 compounds were employed to predict values of
log Ki

ino values for 8 or 7 test compounds, and training
sets of 21 compounds were employed to predict values
of log Ki

mesg for 7 test compounds. Values of log Ki
mesg,

log Ki
ino, and log IC50

ino at 10 µM inosine were modeled.
Results of the modeling effort for values of log Ki

mesg

are collected in Table 2 and presented graphically in
Figure 2. Those for values of log Ki

ino and log IC50
ino are

presented graphically in Figures 3 and 4.
Training Set Characterization. In each of the 12

modeling efforts (four each for values of log Ki
mesg and

log Ki
ino and four for values of log IC50

ino), we were able
to adequately characterize the training set. Plots (not
shown) of log(estimated) vs log(measured) have values
of R2 which vary from 0.93 to 0.99 for the 12 runs. In
Table 2 and Figures 2-4, estimated values were taken
as the average of the three values obtained for each
compound. For 27 of the 28 compounds for which values
of log Ki

mesg were estimated and for 28 of the 29
inhibitors for which values of log Ki

ino were estimated,
the three values were highly consistent, with standard
deviations generally less than 0.10 log unit (Table 2 and
Figures 2 and 3). The exceptions are compound 028 for
log Ki

mesg, for which only one qualified estimate was
obtained (Table 2), and compound 019, for which the
estimated value for log Ki

ino is 1.29 ( 0.39. Results are
presented graphically in Figures 2 and 3. Results of
comparable quality were obtained for values of log
IC50

ino (Figure 4). Again, the single exception to consis-
tency in the estimated values of log IC50

ino was com-
pound 019 for which a value of 0.76 ( 0.23 was
obtained.

Predictions. Comparisons of measured and pre-
dicted values for log Ki

mesg, log Ki
ino, and log IC50

ino are
provided in Table 2 and Figures 2-4. For 25 of the 28
inhibitors, predicted values of log Ki

mesg are within the
estimated experimental error ((0.2 log unit) of the
measured values (Table 2). No qualified prediction for
compound 028 was obtained, and predicted values for
compounds 002 and 022 are just slightly beyond the
limits of experimental error. Similarly, for 24 of the 29
inhibitors, predicted values for log Ki

ino are within the
estimated experimental error of the measurements. For
an additional three inhibitors, predictions are within 2
standard deviations of the estimated measurement
error. Predictions for the two weakest inhibitors in the
data set, 027 and 028, are more substantially in error.

Figure 1. Distribution of values of log IC50
ino for a set of

inhibitors of calf spleen PNP.
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Values of log Ki
ino for the last two inhibitors are

substantially greater those for any compound employed
in the training set, requiring an extrapolation of more
than 1 order of magnitude. Results are presented
graphically in Figure 3. Similarly, 28 of the 34 predic-
tions of log IC50

ino are within the estimated experimental
error, and those for four additional compounds are
within 2 standard deviations of the measured value
(Figure 4). Here, too, the estimates for 027 and 028 are
substantially in error.

We carried out an independent (and chronologically
earlier) effort to model the values of log IC50

ino (Table
1) employing a different set of molecular descriptors.

The inhibitors of Table 1 were divided into three sets:
(i) a training set of 23 compounds, (ii) a test set of 5
compounds, and (iii) an unknown set of 5 compounds.

At the outset of this modeling work, the values of
IC50

ino for compounds in the training and test sets were
known to us. Values of IC50

ino for the five compounds in
the unknown set were not known to us at the time the
modeling was done. Samples of these inhibitors were
subsequently supplied to us and values of IC50

ino deter-
mined.

Measured, estimated, and predicted values of log
IC50

ino for the data set are collected in Table 3. The
statistical model does an adequate job of characterizing

Table 2. Measured, Estimated, and Predicted Values of Log Ki
mesg for a Series of Inhibitors of Calf Spleen PNPa

log Ki
mesg estimated or predictedb ∆

inhibitor log Ki
mesg measured 1 2 3 4 estimatedc predictedd

001 -2.41 -2.38* -2.37 -2.45 -2.31 -0.03 -0.03
002 -2.44 -2.30 -2.21* -2.27 -2.33 -0.11 -0.23
003 -2.37 -2.33 -2.31 -2.38* -2.29 -0.06 0.01
004 -2.45 -2.35 -2.38 -2.35 -2.36* -0.09 -0.09
005 -1.84 -1.72* -1.86 -1.84 -1.91 0.03 -0.12
006 -2.77 -2.78 -2.58* -2.75 -2.86 -0.11 -0.19
007 -1.46 -1.51 -1.50 -1.44* -1.46 0.03 -0.02
008 -2.19 -2.23 -2.16 -2.16 -2.15* -0.01 -0.04
009 -2.21 -2.21* -2.20 -2.20 -2.18 -0.02 0
010 -2.41 -2.40 -2.34* -2.40 -2.35 -0.03 -0.07
011 -2.22 -2.21 -2.28 -2.13l* -2.16 0 -0.09
012 -2.48 -2.39 -2.38 -2.47 -2.53* -0.07 0.05
013 -1.66 -1.67* -1.59 -1.63 -1.69 -0.02 0.01
014 -2.34 -2.32 -2.26* -2.42 -2.36 0.03 -0.08
015 -1.22 -1.39 -1.31 -1.24* -1.24 0.09 0.02
016 -2.51 -2.45 -2.39 -2.31 -2.41* -0.13 -0.10
017 -1.69 -1.85* -1.67 -1.85 -1.70 0.05 0.16
018 -1.68 -1.65 -1.69* -1.59 -1.68 -0.04 0.01
019 -1.16 -1.28 -1.29 -1.32* -1.21 0.10 0.16
020 -1.50 -1.46 -1.53 -1.48 -1.50* -0.01 0
021 -0.478 -0.567* -0.516 -0.521 -0.473 -0.01 0.089
022 -0.301 -0.311 -0.549* -0.453 -0.372 0.08 0.248
023 -0.116 -0.110 -0.095 -0.231* -0.116 -0.01 0.115
024 -2.27 -2.25 -2.23 -2.16 -2.36* -0.06 0.09
025 -1.77 -1.79* -1.77 -1.84 -1.77 0.02 0.02
026 -1.45 -1.62 -1.47* -1.61 -1.55 0.14 0.02
028 1.83 1.84 - -* - - -
029 -0.167 -0.180 -0.153 -0.227 -0.245* 0.02 0.078

a All values of Ki were determined at pH 7.4, 1 mM phosphate, and 25 °C. b Predicted values are the single values obtained for each
inhibitor as a member of a test set and are designated by asterisks; estimated values are averages of the three values obtained for each
inhibitor as a member of training sets. c The difference between logarithms of measured and estimated values. d The difference between
the logarithms of measured and predicted values.

Figure 2. Plot of logarithms of measured values for Ki
mesg

against the corresponding estimated (squares) and predicted
(circles) values for a set of inhibitors of calf spleen PNP.

Figure 3. Plot of logarithms of measured values for Ki
ino

against the corresponding estimated (squares) and predicted
(circles) values for a set of inhibitors of calf spleen PNP.
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the training set: the difference between measured and
estimated values is less than 2 standard deviations of
the measurement error for all 23 compounds and within
1 standard deviation of the measurement error for 16
of the 23 compounds. There is a tendency for the model
to estimate values of log IC50

ino slightly greater than
the measured values. The more detailed modeling effort
described earlier does a somewhat better job of charac-
terizing the data set than does this effort. However,
comparison of the average of the three estimates in
Figure 4 with the single estimates in Table 3 reveals
that they are generally consistent, with no major
discrepancies.

In addition to adequately characterizing the training
set, this model has predictive power for structures and
values of log IC50

ino for compounds outside the training
set. Of particular note are the results for the test set
(Table 3). For all five compounds, predicted values are
within 1 standard deviation of the experimental error.
This is notable since two of the compounds, 027 and 028,
have property values at least 1 order of magnitude
greater than that for any compound in the training set
(Figure 1). Hence this statistical model has at least some
power to extrapolate to property values outside those
of the training set. In addition, three of the compounds
in the test set are structurally distinct from the training
set inhibitors. With three exceptions, the training set
consists of 9-substituted-9-deazaguanines. The test set
includes the only 3-substituted-hypoxanthine, the only
9-substituted-8-methyl-9-deazaguanine, and the only
inhibitor not bearing a substituent on the purine ring.
Thus, it appears that the model has at least modest
ability to extrapolate to structures beyond those in the
training set.

The predicted values for the unknown set reveal that
further progress is required to develop a really robust
statistical model. For three of the five unknowns, the
model predicts the property values within 1 standard
deviation of the experimental error. However, estimated
values of IC50

ino for two of the inhibitors are 1 order of
magnitude greater than the measured values.

Discussion
Estimates and predictions made employing a set of

molecular descriptors which have generally worked well

for us in QSAR modeling efforts adequately characterize
the training sets and generally provide predicted values
within 1 standard deviation of the measurement error
(Table 2 and Figures 2-4). Given that the data set
contains a few structural outliers among a larger series
of 9-substituted-9-deazaguanines and a few rather weak
inhibitors among a larger collection of substantially
more potent ones (Figure 1), these results are certainly
encouraging. They suggest that the current QSAR model
has substantial power to predict values of Ki and IC50
for novel, potent 9-substituted-9-deazaguanines and
useful power to predict such values for reasonably
potent inhibitors outside this structural class. Creation
of a more robust QSAR model will require greater
structural diversity and a larger and more uniform
distribution of Ki or IC50 values in the data set. Work
to achieve these goals is underway.

It is not surprising that the largest differences
between measured and predicted values are those for

Figure 4. Plot of logarithms of measured values of IC50
ino

against the corresponding estimated (squares) and predicted
(circles) values for a set of inhibitors of calf spleen PNP.

Table 3. Logarithms of Measured, Estimated, and Predicted
Values of IC50

ino for a Set of Inhibitors of Calf Spleen PNPa

A. Training Set

log

compd measured estimated ∆ estimatedb

001 -1.76 -1.65 -0.11
002 -1.78 -1.86 0.08
003 -1.59 -1.24 -0.35
004 -1.65 -1.54 -0.11
005 -0.99 -0.87 -0.12
006 -1.44 -1.15 -0.29
007 -0.62 -0.36 -0.26
009 -1.69 -1.61 -0.08
010 -1.83 -1.96 0.13
011 -1.76 -1.79 0.03
012 -1.72 -1.51 -0.21
013 -1.45 -1.28 -0.17
014 -1.79 -1.87 0.08
015 -0.60 -0.61 0.01
016 -1.66 -1.34 -0.32
017 -0.91 -0.87 -0.04
018 -1.16 -1.06 -0.10
019 -0.61 -0.66 0.05
020 -0.76 -0.52 -0.24
021 -0.19 -0.18 -0.01
022 0.29 0.24 0.05
023 0.17 0.15 0.02
024 -1.61 -1.37 -0.24

B. Test Set

log

compd measured predicted ∆ predictedc

025 -1.20 -1.08 -0.12
026 -0.87 -0.90 0.03
027 1.75 1.70 0.05
028 1.31 1.15 0.16
029 0.36 0.56 -0.20

C. Unknown Set

log

compd measured predicted ∆ predictedc

030 -1.82 -0.72 -1.10
031 -1.40 -0.26 -1.14
032 -1.38 -1.34 -0.04
033 -0.82 -1.00 0.18
034 -1.10 -1.10 0.00

a Logarithms have been taken of values expressed in micromo-
lar. b The difference between logarithms of measured and esti-
mated values. c The difference between logarithms of measured
and predicted values.
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the weakest inhibitors, for which a substantial extrapo-
lation is required. Our models underestimate the values
for Ki and IC50 for both 027 and 028; that is, we predict
these inhibitors to be more potent than they are. Thus,
our QSAR model pulls the estimated values back toward
the mean of the values of the training set. However,
using a different set of molecular descriptors, we were
successful in developing a QSAR model which predicted
values for these inhibitors within experimental error
(Table 3). Thus, it is clear that QSAR models for this
data set can be created which have the power to
extrapolate, but it is not clear how to choose a set of
molecular descriptors to achieve this goal.

Among compounds that have values of Ki and IC50
that fall within the range of those in the training sets,
019 proved most problematic, in terms of both training
set characterization and prediction; our predicted value
is in error by about 2 standard deviations of the
measurement error. It has previously been observed (J.
A. Montgomery, personal communication) that the
measured value of IC50

ino for 019 varies by more than 1
order of magnitude depending on whether the reaction
is initiated by addition of inosine or enzyme. This
behavior has been confirmed in our Laboratory; the
mechanistic basis of this behavior is unclear. It is not
observed for a number of other inhibitors examined in
this study. It is not clear whether our difficulties in
accurately predicting values for this inhibitor reflect an
inadequacy of our QSAR model at its present state of
development or a subtle mechanistic difference between
this inhibitor and others in the data set leading to an
uncertainty in the pertinent measured value.

Measured values of Ki for most of the inhibitors
employed in this study are dependent on the nature of
the substrate used (Table 1). In most, but not all, cases
values of Ki

mesg are smaller than those of Ki
ino. It has

been established through structural studies6-9 as well
as kinetic characterization6-9 that these are competitive
inhibitors, a result confirmed in the present work.
Substrate-dependent values of Ki for a set of competitive
inhibitors is a highly surprising result, for which we
know of no precedent. Since values of Ki are equilibrium
constants for dissociation of E‚I complexes, this result
demands that E is in some sense different when MESG
and inosine are employed as substrates.

Onuffer and Kirsch have provided a possible model
for our results.10 Anomalous behavior of a site-specific
mutant (D222A) of Escherichia coli aspartate ami-
notransferase demands the existence of two slowly
interconverting enzyme forms. By analogy, it is possible
that (a) PNP emerges from a catalytic event in one of
two forms, depending on whether MESG or inosine is
employed as substrate; (b) interconversion of these two
forms is slow compared to the rate of a catalytic cycle;
and (c) the two forms have differential affinities for the
set of inhibitors employed in this work. Thus, in effect,
the inhibitors are binding to two different enzyme
structures. Definition of the precise basis for substrate-
dependent values of Ki for competitive inhibitors will
require detailed further study.

Experimental Section
Materials. 2-Amino-6-mercapto-7-methylpurine ribonucleo-

side (MESG) was synthesized as previously described.11 All
PNP inhibitors employed were synthesized by scientists at

BioCryst Pharmaceuticals Inc. and are the gift of that orga-
nization. With the exception of compounds 013 and 019 (see
Table 1 for structures), which are enantiomers, other inhibitors
bearing one or two chiral centers were studied as racemates
or diastereomeric mixtures. Calf spleen PNP (phosphate-free,
purity greater than 98%) and xanthine oxidase were the best
grades available from Sigma Chemicals and were used without
further purification. Other reagents were obtained com-
mercially from either Sigma or Aldrich and were the best grade
available.

Kinetic measurements were carried out spectrophotometri-
cally with aid of an HP 8453 diode array spectrophotometer.
Rates were demonstrated to increase linearly with increasing
enzyme concentration. Values of Ki employing MESG and 1
mM phosphate as substrate were generally carried out with
an automated enzyme kinetic workbench built around an HP
ORCA laboratory robot equipped with an HP 8453 spectro-
photometer.11 In several cases, values of Ki employing MESG
as substrate were also measured manually. Results obtained
with the robotic workbench and those obtained manually gave
concordant results. Values of Ki employing inosine and 1 mM
phosphate as substrate were determined manually employing
a standard coupled assay.12 It was demonstrated that these
values are independent of the concentration of the coupling
enzyme employed in the assay. All values of Ki were deter-
mined by making rate measurements at five inhibitor concen-
trations for each of five substrate concentrations. In all cases,
the kinetic data revealed, as expected,6-9 competitive inhibi-
tion. Each determination of Ki also yielded five values of IC50,
one for each concentration of inosine or MESG employed. As
expected, values of IC50 increased linearly with substrate
concentration, and extrapolation of these values to zero
substrate concentration provided values of Ki consistent with
those based on statistical analysis of all data points. Values
of IC50 were independently determined by making rate mea-
surements for at least five inhibitor concentrations employing
10 µM inosine and 1 mM phosphate as substrates. Measure-
ments were usually made at an enzyme concentration of
approximately 4.0 nM (as the monomer). In several cases,
measurements of Ki and IC50 were made over the enzyme
concentration range 2.3-4.6 nM. Over this concentration
range, these values were independent of enzyme concentration.
All measurements were made at 25 °C, pH 7.4 (maintained
with 0.1 M N-(2-hydroxyethyl)piperizine-N′-(2-ethanesulfonic
acid) sodium salt (HEPES) buffer). Reactions employing MESG
as substrate were followed at 356 or 357 nm. Those employing
inosine as substrate were followed at 293 nm. Kinetic param-
eters were estimated from the collected data employing the
Leonora statistics package. Values of pH were determined with
a Radiometer PHM240 pH meter.

Statistical modeling was carried out employing software
based on a novel QSAR paradigm. Several essential features
of this paradigm have been published.13 Briefly, a set of
molecular descriptors, including those 2D and 3D descriptors
generally employed in QSAR calculations, a set of quantum-
mechanical descriptors,14-16 and many based on transferable
atom equivalent (TAE) technology,13,17 was calculated for a
single optimized conformation of each molecule in the data set.
Optimized conformations were obtained employing CONCORD
and Mopac; precisely the same sequence of operations was
performed for each member of the data set. The data set
modeled was then decomposed into subsets employing a
mixture of regression models algorithm. QSAR models for each
subset were then qualified for their ability to predict property
values for each molecule in the training set but outside the
subset, employing one of several sets of molecular descriptors.
Only those subsets passing this criterion were retained. Partial
least-squares (PLS) statistical models were then developed and
optimized for each qualified subset. Those PLS models passing
qualifying hurdles were then incorporated into a matrix-of-
models. The matrix-of-models was then employed to predict
property values for molecules outside those of the training set.
Details will be reported elsewhere.
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